高广花

发布时间:2018-01-04浏览次数:1993

研究
项目

1. 求解四阶时间多项分数阶扩散波方程的差分算法研究(BK20191375),江苏省自然科学基金面上项目,2019.07-2022.06 (主持,在研)

2. 数值求解分数阶偏微分方程的高精度快速算法研究(11401319)国家自然科学青年基金项目,2015.01-2017.12 (主持,已结题)

3. 分数阶偏微分方程的高精度有限体积元方法研究(11326225)国家自然科学数学天元基金专项基金项目, 2014.01-2014.12 (主持, 已结题)

3. 时间分数阶偏微分方程的高精度差分算法设计及理论分析(BK20130860) , 江苏省自然科学青年基金项目, 2013.07-2016.06(主持,已结题)

4. 求解分数阶偏微分方程的高精度算法研究(NY213051),南京邮电大学校引进人才科研启动基金项目,2013.07-2016.06   (主持,已结题)

5. 异质多智能体系统的异步采样协调动力学分析( BK20181387),江苏省自然科学基金面上项目,2018.07-2021.06 (参与,在研)

6. 可分非凸优化的分解算法及其在图像分割中的应用研究(11501301)   , 国家自然科学青年基金,   2016.01-2018.12 (参与, 已结题)

7. 网络化异质多智能体系统的协调动力学分析与控制(61304169)   , 国家自然科学青年基金,   2014.01-2016.12 (参与, 已结题)

8. 空间分数阶偏微分方程高精度快速算法的研究(11271068)国家自然科学面上项目,2013.01-2016.12 (参与, 已结题)

代表作

[1]  《分数阶微分方程的有限差分方法(第二版)》,孙志忠,高广花编,科学出版社,北京,20211月。(信息与计算科学丛书第87本)

[2]  Fractional   Differential Equations-Finite Difference Methods. Zhi-zhong Sun, Guang-hua   Gao. DE GRUYTER/Science Press Beijing, 2020.08.

[3]  《分数阶微分方程的有限差分方法》孙志忠,高广花编,科学出版社,北京,20158月。(信息与计算科学丛书第70本)

[4]  Guang-hua Gao, Rui Tang, Qian Yang,   A compact finite difference scheme for the fourth-order time multi-term   fractional sub-diffusion equations with the first Dirichlet boundary   conditions, International   Journal of Numerical Analysis and Modeling, 18 (2021), pp. 100-119. (SCI)

[5]  Guang-hua Gao, Qian Yang, Fast   evaluation of linear combinations of Caputo fractional derivatives and its   applications to multi-term time-fractional sub-diffusion equations, Numerical   Mathematics: Theory, Methods and Applications, 13 (2020), pp. 433-451.(SCI)

[6]  Guang-hua Gao, Rui Liu,A   compact difference scheme for fourth-order multi-term fractional wave   equations and maximum error estimates, East Asian Journal on Applied   Mathematics, 9 (2019), pp. 703-722. (SCI)

[7]  Guang-hua Gao, Anatoly A. Alikhanov, Zhi-zhong   Sun, The temporal second order difference schemes based on the interpolation approximation   for solving the time multi-term and distributed-order fractional sub-diffusion   equations, Journal of Scientific Computing, 73 (2017), pp.   93-121.  (SCI)

[8]  Guang-hua Gao, Zhi-zhong Sun, Two difference   schemes for solving the one-dimensional time distributed-order fractional   wave equations, Numerical Algorithms, 74 (2017), pp. 675-697. (SCI)

[9]  Guang-hua Gao, Zhi-zhong Sun, Two alternating direction   implicit difference schemes for solving the two-dimensional time distributed-order   wave equations, Journal of Scientific Computing,   69 (2016), pp. 506-531. (SCI)

[10]     Guang-hua Gao, Zhi-zhong Sun, Two alternating direction implicit difference schemes   for two-dimensional distributed-order fractional diffusion equations, Journal   of Scientific Computing,  66   (2016), pp. 1281-1312. (SCI)

[11]     Guang-hua Gao, Zhi-zhong Sun, Two unconditionally stable and convergent difference   schemes with the extrapolation method for the one-dimensional   distributed-order differential equations,   Numerical Methods for Partial Differential Equations, 32 (2016) , pp.   591-615. (SCI)

[12]     Guang-hua Gao, Zhi-zhong Sun, Two alternating direction implicit difference   schemes with the extrapolation method for the two-dimensional   distributed-order differential equations, Computers and Mathematics with   Applications, 69 (2015)  pp.   926-948.  (SCI)

[13]     Guang-hua Gao, Hai-wei Sun, Zhi-zhong Sun, Some high-order difference schemes for   the distributed-order differential equations, Journal of Computational   Physics,  298 (2015) pp. 337-359. (SCI)

[14]     Guang-hua Gao, Hai-wei Sun, Zhi-zhong Sun, Stability and convergence of finite   difference schemes for a class of time-fractional sub-diffusion equations   based on certain superconvergence, Journal of Computational Physics,   280(2015)  pp. 510-528. (SCI)

[15]     Guang-hua Gao, Hai-wei Sun, Three-point combined compact difference schemes for time-fractional   advection-diffusion equations with smooth solutions, Journal of   Computational Physics, 298 (2015) pp.520-538. (SCI)

[16]    Guang-hua Gao, Hai-wei Sun, Three-point combined compact alternating direction   implicit difference schemes for two-dimensional time-fractional   advection-diffusion equations, Communications in Computational Physics,   17(2015) pp. 487-509. (SCI) 

[17]    Guang-hua Gao, Zhi-zhong Sun, Hong-wei Zhang, A new fractional numerical   differentiation formula to approximate the Caputo fractional derivative and   its applications, Journal  of  Computational Physics, 259 (2014) pp.   33-50.  (SCI)

[18]     Guang-hua Gao, Zhizhong Sun, The finite   difference approximation for a class of fractional sub-diffusion equations on   a space unbounded domain, Journal of Computational Physics, 236,   443-460, 2013. (SCI)

[19]     Guang-hua Gao, Zhi-zhong Sun, Compact difference schemes for heat equation with   Neumann boundary conditions (II), Numerical Methods for Partial   Differential Equations, 29 (2013) pp. 1459-1486. (SCI)

[20]     Guang-hua Gao, Zhi-zhong Sun, Ya-nan Zhang, A finite difference scheme for   fractional sub-diffusion equations on an unbounded domain using artificial   boundary conditions, Journal of Computational Physics, 231   (2012),  pp. 2865-2879. (SCI)

[21]     Guang-hua Gao, Zhi-zhong Sun, Finite difference approach for the initial-boundary   value problem of the fractional Klein-Kramers equation in phase space, Central  European Journal of  Mathematics, 10 (2012) pp. 101-115. (SCI)

[22]     Guang-hua Gao, Zhi-zhong Sun, A compact finite difference scheme for the fractional   sub-diffusion equations, Journal of Computational Physics230   (2011), pp. 586-595. (SCI)

[23]    Guang-hua Gao, Tong-ke Wang, Cubic superconvergent finite volume element method   for one-dimensional elliptic and parabolic equations, Journal of   Computational and Applied Mathematics, 233 (2010), pp. 2285-2301. (SCI)

[24]     Hong Sun, Zhi-zhong Sun, Guang-hua   Gao, Some temporal second order difference schemes for fractional wave   equations, Numerical Methods for Partial Differential Equations, 32   (2016), pp. 970-1001. (SCI)

[25]     Hong Sun, Zhi-zhong Sun, Guang-hua   Gao, Some high order difference schemes for the space and time fractional   Bloch-Torrey equations, Appliced Mathematics and Computation, 281   (2016), pp. 356-380. (SCI)

[26]     Tong-ke Wang, Na Li, Guang-hua Gao, The asymptotic expansion   and extrapolation of trapezoidal rule for integrals with fractional order   singularities, International Journal of Computer Mathematics, 92   (2015) pp. 579-590. (SCI)

[27]     Zhi-fang Liu, Tong-ke Wang ,Guang-hua Gao, A local   fractional Taylor expansion and its computation for insufficiently smooth   functions, East Asian Journal on Applied Mathematics, 5 (2015) pp.   176-191. (SCI)

[28]     Zhifang Liu, Tongke Wang, Guang-hua Gao, A local fractional   Taylor expansion and its computation for insufficiently smooth functions, East   Asian Journal on Applied Mathematics, 5 (2015) pp. 176-191.

[29]     Ri Du, Zhi-zhong Sun, Guang-hua Gao, A second-order linearized   three-level backward Euler scheme for a class of nonlinear expitaxial growth   model, International Journal of Computer Mathematics, 92 (2015), pp.   2290-2309 (SCI)

[30]     Jin-cheng Ren, Guang-hua Gao, Efficient and stable numerical   methods for the two-dimensional fractional Cattaneo equation, Numerical   Algorithms, 69 (2015), pp. 795-818 (SCI)

[31]     Hai-yan Cao, Zhi-zhong Sun, Guang-hua Gao, A three-level   linearized finite difference scheme for the Camassa-Holm equation, Numerical   Methods for Partial Differential Equations, 30 (2014) pp.451-471. (SCI)

[32]     Peng Mao, Jing Chen, Rongqing Xu, Guozhi Xie, Yuanjian Liu, Guang-hua   Gao, Shan Wu, Self-assembled silver nanoparticles: correlation between   structural and surface Plasmon resonance properties, Applied Physics A,   117 2014pp.   1067-1073. (SCI)

[33]Rongqing Xu, Yunqing Lu, Chunhui   Jiang, Jing Chen, Peng Mao, Guang-hua Gao, Labao Zhang, Shan Wu,   Facile fabrication of three-dimensional Graphene foam/poly(dimethylsiloxane)   composites and their potential application as strain sensor, Applied   Material & Interfaces, 6 (2014) pp.13455-13460. (SCI)

[34]刘蕊,高广花,袁安安,求解一类多项时间四阶时间分数阶慢扩散系统的有限差分格式,宁夏大学学报(自然科学版)Vol. 38, No. 2 (2017) pp. 1-10.

[35]王星,高广花,王同科,半线性抛物问题的一类三次有限体积元方法,辽宁工程技术大学学报(自然科学版)Vol. 34, No. 2 (2015) pp. 281-284.

[36]李娟,高广花,求解Fisher-Kolmogorov方程的三层线性化紧差分格式,西南民族大学学报(自然科学版)Vol. 41, No. 5 (2015) pp. 634-639.

[37]高广花,王同科,一类拟线性神经传播方程的紧LOD差分格式,天津师范大学学报(自然科学版)Vol. 29, No. 1 (2009) pp. 1-6.

[38]高广花,王同科,两点边值问题基于三次样条插值的高精度有限体积元方法,山东大学学报(理学版)Vol. 44, No. 2 (2009) pp. 45-51.

 

 


Copyright © 南京邮电大学理学院  All Rights Reserved.